If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4z^2+9z-9=0
a = 4; b = 9; c = -9;
Δ = b2-4ac
Δ = 92-4·4·(-9)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-15}{2*4}=\frac{-24}{8} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+15}{2*4}=\frac{6}{8} =3/4 $
| 2x+6x-10x=22 | | 23(43x+9(34/(34x+5)-3^8)45+7x/3x)=-1234 | | 2x-1=9x-2 | | 45^x=4^10 | | 2(x^2)+8(x^2-972)=121.5 | | --7=18-5f | | 9(x+5)=5x-(3-x) | | 6h-(8-3h)=6-3(h+2) | | 3x+40+7x+1=180 | | 3x+40=7x-1 | | 4x+38=6x-8 | | 2x+4+10x-4+3x=180 | | 9(x+5)=5(x-)(3-x) | | 13x-4x+32=25 | | 13=2-4d | | 7x-3+39=180 | | 7x-3=39=180 | | −6x=30 | | -5+3x=16-4x | | v/2=-17 | | F(5)=3x-4 | | 25.5=2(3.14)r | | x^2=6x=0 | | 1.2x+4.3=2.1-2 | | 2x-0.005=x | | 25.75=2(3.14)r | | 3x+0.6=6 | | 5-(3x+2)=13-x | | 6^x+2=72 | | 3x+1-5x=-15 | | 54+x+89=76 | | -2a+6a=0 |